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Abstract Motivated by some recent research on the terminal (reduced) distance
matrix, we consider the terminal Wiener index (T W ) of trees, equal to the sum of
distances between all pairs of pendent vertices. A simple formula for computing T W
is obtained and the trees with minimum and maximum T W are characterized.
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1 Introduction

Let G be a connected graph on n vertices, whose vertices are labelled by v1, v2, . . . , vn .
The distance d(vi , v j |G) between two vertices vi and v j of G is equal to the length
(= number of edges) of the shortest path that connects vi and v j [1]. The square matrix
of order n whose (i, j)-entry is d(vi , v j |G) is called the distance matrix of G.

In a number of recent studies, the so-called terminal distance matrix [2,3] or reduced
distance matrix [4] of trees was considered. If an n-vertex tree T has k pendent vertices
(= vertices of degree one), labelled by v1, v2, . . . , vk , then its terminal distance matrix
is the square matrix of order k whose (i, j)-entry is d(vi , v j |T ). Recall that for any
n-vertex tree, 2 ≤ k ≤ n − 1. The (unique) n-vertex trees with k = 2 and k = n − 1
are, respectively, the path (Pn) and the star (Sn).

Terminal distance matrices were used in the mathematical modelling of proteins
and genetic codes [2,3,5], and were proposed to serve as a source of a whole class
of molecular-structure descriptors [3,4]. It is worth noting that the terminal distance
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matrix of a tree T determines the entire distance matrix of T , and thus fully determines
the tree T itself [6]. It is easy to envisage that in the terminal distance matrix of a non-
tree graph G, the information on the structure of G can be almost completely missing:
just think of an arbitrary graph possessing exactly two pendent vertices, both adjacent
to the same vertex.

One of the oldest and most thoroughly studied molecular-structure descriptors is
the Wiener index [7], the sum of the distances between all pairs of vertices of a given
graph G:

W (G) =
∑

1≤i< j≤n

d(v j , v j |G).

For details on the Wiener index see the reviews [8,9], the recent papers [10–17]
and the references cited therein.

Motivated by the previous researches on the terminal distance matrix and on its
chemical applications [2–6] we now define the terminal Wiener index T W (T ) of
a tree T as the sum of the distances between all pairs of pendent vertices. More
formally,

T W (T ) =
∑

1≤i< j≤k

d(v j , v j |T ). (1)

As before, in Eq. 1 it is assumed that the tree T has n vertices of which k vertices,
labelled by v1, v2, . . . , vk , are pendent.

In order to illustrate the above definition, we show how the terminal Wiener index
is computed for the tree T1 depicted in Fig. 1. Here we directly apply Eq. 1.

The tree T1 has six pendent vertices—v1, v2, . . . , v6. Therefore the summation on

the right-hand side of (1) contains

(
6

2

)
= 15 terms, and we have:

v1 v2 v3

v4

e1 e2 e3 e4 e5

e6 e7 e8

e9

v5

v6

Fig. 1 A tree whose terminal Wiener index is equal to 51
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T W (T1) = d(v1, v2|T1) + d(v1, v3|T1) + d(v1, v4|T1)+d(v1, v5|T1) + d(v1, v6|T1)

+d(v2, v3|T1)+d(v2, v4|T1)+d(v2, v5|T1)+d(v2, v6|T1) + d(v3, v4|T1)

+d(v3, v5|T1)+d(v3, v6|T1)+d(v4, v5|T1)+d(v4, v6|T1) + d(v5, v6|T1)

= 3 + 4 + 2 + 5 + 3 + 3 + 3 + 4 + 2 + 4 + 3 + 3 + 5 + 3 + 4 = 51.

2 A modified Wiener’s “first theorem”

The first question that should be asked in connection with the terminal Wiener index is
how it could be efficiently computed. For this we offer a result that is fully analogous
to Wiener’s “first theorem” for the ordinary Wiener index [7,8].

In his seminal article [7] Wiener communicated the formula

W (T ) =
∑

e

n1(e) · n2(e) (2)

which holds for any tree T . This result may be viewed as the first theorem ever for
the Wiener index. In formula (2) e stands for an edge, whereas n1(e) and n2(e) are
the number of vertices lying on the two sides of e ; the summation in (2) goes over
all edges of the respective tree T . If T has n vertices, then n1(e) + n2(e) = n for all
edges e.

In the paper [7] no proof of formula (2) was put forward. The proof of (2) is easy
[18]: Instead of summing the distances (= the number of edges in the shortest paths)
between all pairs of vertices in the tree T , we may count how many times a particular
edge e lies on the (unique) shortest path between two vertices, and then add these
counts over all edges of the underlying tree. The number of shortest paths that go
through the edge e is equal to n1(e) · n2(e).

Using the same idea we obtain:

Theorem 1 Let T be an n-vertex tree with k pendent vertices, and let e be its edge.
Denote by p1(e) and p2(e) the number of pendent vertices of T , lying on the two sides
of e. Then

T W (T ) =
∑

e

p1(e) · p2(e) (3)

with the summation embracing all the n − 1 edges of T .

Proof Instead of summing the distances between all pairs of pendent vertices in the
tree T , we count how many times a particular edge e lies on the shortest path between
two pendent vertices, and then add these counts over all edges of the underlying tree.
Such shortest paths will start at p1(e) pendent vertices (those lying on one side of
e) and end at p2(e) pendent vertices (those lying on the other side of e). Thus their
number is p1(e) · p2(e), which leads to Eq. 3. ��

In should be noted that for all edges of the tree T ,

p1(e) + p2(e) = k and p1(e), p2(e) ≥ 1.

123



J Math Chem (2009) 46:522–531 525

Consequently,

k − 1 ≤ p1(e) · p2(e) ≤
⌊

k

2

⌋ ⌈
k

2

⌉
.

If e is a pendent edge, then p1(e) · p2(e) = k − 1.
For the tree T1 (see Fig. 1) we immediately get:

p1(e1) = 1; p2(e1) = 5 p1(e2) = 2; p2(e2) = 4
p1(e3) = 4; p2(e3) = 2 p1(e4) = 5; p2(e4) = 1
p1(e5) = 5; p2(e5) = 1 p1(e6) = 1; p2(e6) = 5
p1(e7) = 1; p2(e7) = 5 p1(e8) = 1; p2(e8) = 5
p1(e9) = 1; p2(e9) = 5

and therefore formula (3) yields:

T W (T1) = (1 × 5) + (2 × 4) + (4 × 2) + (5 × 1) + (1 × 5)

+(1 × 5) + (1 × 5) + (1 × 5) + (1 × 5) = 51.

This example shows that the calculation of T W by means of formula (3) is somewhat
easier than by using the Definition 1. However, the true value of formula (3) is in
enabling one to deduce a number of general properties of the terminal Wiener index.

3 The tree with minimal terminal Wiener index

For the considerations that follow one should recall that the summation on the right-
hand side of (3) goes over n − 1 (non-zero) terms.

As further simple examples of the application of formula (3) we compute the ter-
minal Wiener index of the star and the path.

In the case of the star Sn , there are n − 1 pendent vertices, and all edges are
pendent. Therefore for all edges of the star, p1(e) = 1, p2(e) = n − 2, resulting in
T W (Sn) = (n − 1)[1 × (n − 2)] = (n − 1)(n − 2).

In the case of the path Pn , there are two pendent vertices, and for all edges p1(e) =
p2(e) = 1. Therefore, T W (Pn) = (n − 1)[1 × 1] = n − 1.

Because 1 is the minimal possible value for the product p1(e)· p2(e), it immediately
follows that n − 1 is the minimal possible value that the terminal Wiener index may
assume for n-vertex trees. Because any tree different from Pn possesses at least one
edge e for which p1(e) · p2(e) ≥ 2, we conclude that T W (T ) > n − 1 holds for
all n-vertex trees T �∼= Pn . By this, as a straightforward consequence of Eq. 3 we
obtained:

Theorem 2 For any n-vertex tree, T W (T ) ≥ n − 1. Equality T W (T ) = n − 1 holds
if and only if T ∼= Pn. ��

Thus the path is the tree with minimal terminal Wiener index. The finding of the
tree(s) with maximal T W is less easy and will be achieved in the subsequent sections.

123



526 J Math Chem (2009) 46:522–531

4 Trees with fixed number of pendent vertices having minimal and maximal
terminal Wiener index

In this section we restrict our consideration to n-vertex trees having a fixed number
k of pendent vertices. Such trees have also k pendent edges, and, consequently, k
summands on the right-hand side of Eq. 3 are equal to k − 1. Formula (3) can thus be
rewritten as

T W (T ) = k(k − 1) +
∑

e′
p1(e

′) · p2(e
′) (4)

where e′ are the non-pendent edges of T . Note that there exist n − 1 − k such edges.
The only n-vertex tree with k = 2 is the path Pn . Therefore, in what follows, we

assume that 3 ≤ k ≤ n − 1.
In view of the fact that p1(e′) + p2(e′) = k, the minimal value of the product

p1(e′) · p2(e′) is k − 1. Therefore, if for all non-pendent edges e′ the product p1(e′) ·
p2(e′) is equal to k −1, then the respective tree will have minimal possible T W -value.
Such trees do exist.

A tree is said to be starlike of degree k if exactly one of its vertices has degree greater
than two, and this degree is equal to k, k ≥ 3. In Fig. 2 are depicted all 12-vertex
starlike trees of degree 4.

Theorem 3 Among n-vertex trees with a fixed number k of pendent vertices, k ≥ 3,
the starlike trees of degree k have minimal terminal Wiener index. All n-vertex starlike
trees of degree k have T W = (n − 1)(k − 1).

Proof It is easy to see that among trees, only the starlike trees have the property that
either p1(e) = 1 or p2(e) = 1 holds for any edge e. ��

From Theorem 3 we see that T W = 33 holds for all the eleven trees depicted in
Fig. 2. From this example one concludes that there are numerous non-isomorphic trees
having the same T W -value. In other words, the isomer-discriminating power of the
terminal Wiener index is very low. In particular, all trees with 3 pendent vertices are
starlike, and thus all such trees with same number n of vertices have same T W -values,
equal to 2(n − 1).

We now begin the search for trees with k pendent vertices and maximal T W . For
reason just explained, we are not interested in the case k = 3.

Bearing in mind that the maximal possible value of the product p1(e′) · p2(e′) is
�k/2	 · 
k/2�, from Eq. 4 we conclude that the maximal possible value of T W is
k(k − 1) + (n − 1 − k)�k/2	
k/2�, provided that there exist n-vertex trees with k
pendent vertices, for which all non-pendent edges e′ have the property

p1(e
′) · p2(e

′) =
⌊

k

2

⌋ ⌈
k

2

⌉
. (5)

Indeed, such trees do exist (see below). We thus arrive at:
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Fig. 2 The 12-vertex starlike trees of degree 4. Among 12-vertex trees with 4 pendent vertices these all
have minimal terminal Wiener index, equal to 33

Theorem 4 Among n-vertex trees with a fixed number k of pendent vertices, k ≥ 4,
the trees whose all non-terminal edges e′ satisfy condition (5) have maximal terminal
Wiener index. All such trees have

T W = k(k − 1) + (n − 1 − k)

⌊
k

2

⌋ ⌈
k

2

⌉
. (6)
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Proof We have already seen that the right-hand side of Eq. 6 is the maximal possible
value that T W may assume. What remains is to demonstrate that there are trees
satisfying Eq. 6. The construction of such trees proceeds as follows:

(a) If k is even, 4 ≤ k < n − 1, then the required tree is obtained from the path Pn−k

by attaching to each of its terminal vertices k/2 new pendent vertices. This tree
is unique.

(b) If k is odd, 5 ≤ k < n − 1, then the required tree is obtained from the path
Pn−k by attaching to each of its terminal vertices (k −1)/2 new pendent vertices,
and by attaching one more pendent vertex to some vertex of Pn−k . There exist

(n − k)/2� distinct trees of this kind.

(c) If k = n − 1, then the respective tree is the star, having no non-pendent edges at
all.

It can easily be verified that the above described trees have n vertices, k pendent
vertices and that their non-pendent edges satisfy condition (5). It is also straightforward
to see that these are the only trees with such properties. ��

The trees with 12 vertices and various number of pendent vertices, having maximal
terminal Wiener index are shown in Fig. 3.

5 Trees with maximal terminal Wiener index

In the preceding section we determined the n-vertex trees with a fixed number k of
pendent vertices, for which T W is maximal. In order to find the n-vertex tree(s) for
which T W is maximal we only have to determine the value of k for which the right-
hand side of Eq. 6 is maximal. This is an elementary, yet not easy mathematical task.
By solving it we obtain:

Theorem 5 Within the class of all trees with n vertices the following holds.

(a) If 3 ≤ n ≤ 9, then the star Sn has maximal terminal Wiener index, equal to
(n − 1)(n − 2).

(b) If n = 3s, s = 4, 5, 6, . . . , then the tree with k = 2s + 2 pendent vertices
(specified in the proof of Theorem 4) has maximal terminal Wiener index, equal
to s3 + 3 s2 + s − 1. This tree is unique.

(c) If n = 3s + 1, s = 3, 4, 5, . . . , then the trees with k = 2s + 2 and k = 2s + 3
pendent vertices (specified in the proof of Theorem 4) have maximal terminal
Wiener indices, all equal to s3 + 4 s2 + 3s. There are 
s/2� distinct trees of this
kind.
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k=4

k=5

k=6

k=7

k=8

k=9

k=10 k=1 1

Fig. 3 Trees with n = 12 vertices and k pendent vertices, having maximal terminal Wiener index. For even
values of k such trees are unique. For odd values of k there exist 
(n − k)/2� distinct trees of this kind; in
particular, 4, 3, 2, and 1 for k = 5, k = 7, k = 9, and k = 11, respectively

(d) If n = 3s + 2, s = 3, 4, 5, . . . , then the trees with k = 2s + 3 pendent vertices
(specified in the proof of Theorem 4) have maximal terminal Wiener indices, all
equal to s3 + 5 s2 + 6s + 2. There are 
(s − 1)/2� distinct trees of this kind.

In Fig. 4 are depicted all n-vertex trees with maximal terminal Wiener index, for
9 ≤ n ≤ 16.

Proof of Theorem 5 will be only sketched. First, the solutions for n ≤ 9 have to be
found by direct checking, which is easy. Then, bearing in mind Eq. 6, and the fact that

⌊
k

2

⌋ ⌈
k

2

⌉
=

⎧
⎨

⎩

k2/4 if k is even

(k2 − 1)/4 if k is odd
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n=9 n=10 n=11

n=12 n=13

n=14 n=15

n=16

Fig. 4 The n-vertex trees with maximal terminal Wiener index, for n = 9, 10, . . . , 16

we define two auxiliary functions:

f1(x) = x(x − 1) + (n − 1 − x)
x2

4

f2(k) = x(x − 1) + (n − 1 − x)
x2 − 1

4

and find the value of the variable x , say x1,max and x2,max , for which these become
maximal. Because x1,max is not integer, we round it to the nearest smaller and nearest
greater even integer. Analogously, we round x2,max to the nearest smaller and nearest
greater odd integer. Next, we set k equal to each of these four values, and compute
the right-hand side of Eq. 6. Four cubic polynomials in n are thus obtained, and we
choose the one (or those two) which have the greatest value. This procedure has to be
done separately for the cases n ≡ 0 (mod 3), n ≡ 1 (mod 3), and n ≡ 2 (mod 3).
Theorem 6 follows. ��
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